

Required Sample Size for Difference-in-Differences Analysis: Implications for Comparative Effectiveness Research

Derek DeLia, Ph.D. Donald Hoover, Ph.D.

Academy Health Annual Research Meeting
Orlando, FL
Monday June 25, 2012

Acknowledgement

This research was supported by the Agency for Health Care Research & Quality (Grant no. R24-HS019678)

Data collection for CER

- Comparative effectiveness research (CER) involves comparison of ≥ 2 treatments (or treatment vs. usual care)
- Approach lends itself to difference-in-differences (DD) analysis

Question for CER study design:

 What is the minimum required sample size to conduct a CER-DD study with a desired level of accuracy?

Outline

- 1. Review DD framework
- 2. Introduce Accuracy in Parameter Estimation (AIPE) framework
- 3. Describe approach for merging DD & AIPE frameworks
- Illustrate calculations with an example

Statistical model for CER

• Difference-in-differences (DD) framework

	Period			
Group	Pre	Post	Difference	
Treatment	Α	В	B-A	
Comparison	С	D	D-C	
DD estimate = (D-C) - (B-A)				

 With observational data, multiple regression model needed to control for confounding factors

$$Y_{it} = \beta_0 + \beta_1 TREAT_i + \beta_2 POST_t + \beta_3 TREAT_i \cdot POST_t + \gamma W_{it} + \varepsilon_{it}$$

• DD estimate controlling for (observable) confounders is eta_3

Accuracy in parameter estimation (AIPE)

- Key question: How large should the sample be to obtain an accurate estimate of β_3 ?
- Accuracy ==> confidence interval (CI) is "sufficiently small"
- Accuracy in parameter estimation (AIPE)
 - AIPE formulas well-established for "ordinary" regression models
 - Set desired accuracy = Half-width of CI
 - <u>Input</u>: Key model parameters (Prior/preliminary studies, guesses)
 - Output: Required sample size
- Goal of the study: Develop adjustments to AIPE formulas to account for the typical structure of DD models used for CER

Simple/heuristic adjustments to AIPE formulas

1. Structure of DD variable

- Can be modeled in advance (proportion in each group & period)
- Anticipate variance & collinearity between DD var and covariates
- 2. Binary outcomes (e.g., survival, readmission)
 - Linear probability model

Anticipate "worst case scenario"

Robust standard errors

for variance of outcome variable

- 3. Group effects (e.g., patients within hospitals)
 - Group and time level fixed effects
 - Cluster adjustment for group-time interactions
 - Variance inflation factor (VIF): N_c = [1 + (m-1)ρ]*N

4. Autocorrelation

- Issue for long time series (e.g., years of monthly data)
- VIF for AR(1) process: $N_a = [(1+\theta)/(1-\theta)]*N$

Test data

- New Jersey Health Initiatives Expecting Success: Excellence in Cardiac Care (NJHI-ES) program
- Effort to reduce readmissions for heart failure patients
 - 10 intervention hospitals
 80 comparison hospitals
 (N=503,231 total observations)
- Intervention timing
 - Intervention: July 2007 December 2009
 - Baseline: January 2002 June 2007
- Findings for likelihood of 90-day readmission Estimate for β_3 = -0.0585 with 95% CI: (-0.1124, -0.0047) Half-width = ± 0.0538

Calculations w/test data

- Goal: Use NJHI-ES data to determine required sample size for an evaluation of a similar future intervention
 - Impact of group effects/cluster adjustment
 - Impact of autocorrelation
- Units of analysis: Initial/index admission
 - Micro-units for required sample size (N)
- Outcome variable: 90-day readmission (yes/no)
- Model: Linear probability DD w/hospital-level group & monthly time effects

 $(a + b)^2 = a^2 + 2ab +$

Required sample sizes to ensure that 95% CI for the DD parameter is within desired accuracy

Scenario 1: All observations are independent (i.e., no clustering & no autocorrelation)

Desired accuracy (Half-width for 95% CI)	Required total sample size (N)	N per hospital*
± 0.10	8,015	89
± 0.05	31,719	352
± 0.01	790,256	8,781

^{*}Assuming M=90 hospitals available for the study.

Original NJHI-ES: Half-width = ± 0.05, N=503,231

Required sample sizes to ensure that 95% CI for the DD parameter is within desired accuracy

Scenario 2: Intraclass correlation coefficient ρ =0.01

Desired accuracy (Half-width for 95% CI)	Required total sample size (N) w/no cluster effect	Required total sample size (N) if M=90 hospitals	Required total sample size (N) if M=1,000
			hospitals
± 0.10	8,015	72,501	8,626
± 0.05	31,719	∞	45,989
± 0.01	790,256	∞	∞

Required sample sizes to ensure that 95% CI for the DD parameter is within desired accuracy

Scenario 3: Autocorrelation for given AR(1) parameter θ

Desired accuracy (Half-width for 95% CI)	Required total sample size (N) w/no autocorr	Required total sample size (N) if θ=0.1	Required total sample size (N) if θ =0.5
± 0.10	8,015	9,796	24,045
± 0.05	31,719	38,768	95,157
± 0.01	790,256	965,868	2,370,768

Discussion

- Sample size formulas fairly straightforward
 - Input values: Study design, preliminary data, & scenarios
- Correlation of observations can have large effects on sample size requirements (clustering + autocorrelation together)
- Formulas based on several assumptions
 - Input parameters are known (not estimated)
 - "Intuitive" formulas (conservative assumptions)
 - Linear probability model
 - Treatment exogeneity (i.e., no unobserved selection bias)
- Our formulas may provide significant improvement over more simplified sample size formulas often used in study planning

QUESTIONS?

Questions later: ddelia@ifh.rutgers.edu